
ELASTICSEARCH INTRODUCTION

Kristijan Duvnjak & Mladen MaravićZagreb, 27.03.2015.

Elasticsearch as a search
alternative to a relational database

PART 1

1

What is Elasticsearch?

What is Elasticsearch (ES)?

Document-oriented schema-free "database"

Built on top of Apache Lucene

Real-time search and data analytics

Full-text search

Distributed (horizontal scalability)

High-avalability

REST API

2

"Open Source (Apache 2)

distributed

RESTful

search engine

built on top of Lucene"

ES for relational database users...

3

Oracle Elasticsearch

Database Index

Partition Shard

Table Type

Row Document

Column Field

Schema Mapping

Index - (everything is indexed)

SQL Query DSL

Clustering – single node cluster

Node = running instance of ES

Cluster = 1+ nodes with the same cluster.name

Every cluster has 1 master node

Clients talk to any node in the cluster

1 Cluster can have any number of indexes

4

About indexes & shards

All data is stored inside one or more indexes

Index has one or more shards (change

requires reindexing)

One index is one folder somewhere on disk

Backup an index? Just tar/zip the folder....

5

Each shard is one full instance of Lucene

Each shard can have zero or more replicas

(can be changed at any time)

Index Shard

Clustering – adding a second node

Example above:

3 indexes

Each index has one primary (P) and one replica (R) shard

6

Clustering – adding a third node

More primary shards:

faster indexing

more scale

More replicas:

faster searching

more failover

7

About documents...

Documents are JSON-based

Schema-free, but not necessarily!

If no schema:

ES guesses field type

and indexes it

With schema (or explicit mapping):

Mapping applies to specific document type (type is just a label)

Mapping defines the following for each field:

─ kind (string, number, date...)

─ to index or not

─ to store data or not

8

About documents...

Each document has an ID (auto-generated or manually assigned)

You can force placement of a document into a specific shard – routing!

Versioning is available – optimistic version control !

9

Index details

inverted index
Elasticsearch Server 1.0 (doc 1)
Mastering Elasticsearch (doc 2)
Apache Solr 4 Cookbook (doc 3)

10

Term Count Document

1.0 1 <1>

4 1 <3>

apache 1 <3>

cookbook 1 <3>

elasticsearch 2 <1>,<2>

mastering 1 <2>

server 1 <1>

solr 1 <3>

Indexing example

GET /blog/_search

{

"took": 6,

"timed_out": false,

"_shards": {

"total": 2,

"successful": 2,

"failed": 0

},

"hits": {

"total": 1,

"max_score": 1,

"hits": [

{

"_index": "blog",

"_type": "blog_comment",

"_id": "AUzhH9M9HW_GzrF8oLAj",

"_score": 1,

"_source": {

"user_id": 1,

"date": "2015-04-01T13:12:12",

"comment": "What’s so cool about Elasticsearch?"

}

}

]

}

}

11

POST /blog/blog_comment?routing=1

{

"user_id" : 1,

"date" : "2015-04-01T13:12:12",

"comment" : "What’s so cool about Elasticsearch?"

}

GET /blog/_mapping

{

"blog": {

"mappings": {

"blog_comment": {

"properties": {

"comment": {

"type": "string"

},

"date": {

"type": "date",

"format": "dateOptionalTime"

},

"user_id": {

"type": "long"

}

}

}

}

}

}

Storing data - indexing

data input: REST, Java API, Rivers*

data analysis: tokenizer and one or more filters

types of filters:

lowercase filter – makes all tokens lowercased

synonyms filter – changes one token to another on the basis of synonym rules

language stemming filters - reducing tokens into root or base forms, the stem

different data storing needs

string analyze,not_analyze field configuration

_all in field

memory field data or doc values

segments, segment merging, throttling

routing, indexing with routing

12

We query them !

All the usual stuff (think of WHERE in SQL)

Full text search with support for:

highlighting

stemming

ngrams & edge-ngrams

Aggregations: term facets, date histograms, ranges

Geo search: bounding box, distance,distance ranges, polygons

Percolators (or reverse-search!)

So, we can store documents

and then what?!?

13

Query details

search types (query_then_fetch, query_and_fetch ...)

same type of analysis as indexing

explain plan

sorting,aggregating data with in memory or on disk values

search filters

Boolean

And/Or/Not

filter cache, BitSets

routing, searching with routing

14

PBZ use case

turnovers by account: 600M documents, 200M/year

routing by account number

indexing performance, 30k-40k documents per second

DB performance in seconds, ES performance in ms (3500 queries/sec):

find last 100 turnovers for a given account number: < 50 ms

find last 100 turnovers for a given account number where description contains some words:

<100ms

15

PART 2

16

Cluster architecture

PBZ ES cluster architecture

17

DATA node 1

DATA node 2

Elasticsearch cluster

CLIENT node 1

NETWORK

DISPATCHER

CLIENT node 2

MASTER node 1

MASTER node 2

MASTER node 3

Cluster per datacenter

DATA node 1

DATA node 2Elasticsearch cluster

CLIENT node

NETWORK

DISPATCHER

MASTER node

PBZ ES cluster architecture

18

Cluster per datacenter

Elasticsearch Administration

plugins

Marvel – monitoring console (GC, throttiling, CPU, memory, heap, search/indexing statistics ...)

Sense – REST UI to Elasticsearch

custom plugins (JDBC rivers ...)

security

Apache Web server

Elasticsearch Shield

speeding up queries using warmers

19

PART 3

20

ELK

PART 4

21

Q & A

Mladen Maravi ć & Kristijan Duvnjak

22

